Copied to
clipboard

G = C4214D6order 192 = 26·3

12nd semidirect product of C42 and D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4214D6, C4⋊C445D6, (C4×D4)⋊9S3, (C4×S3)⋊14D4, D62(C4○D4), (C4×D12)⋊25C2, (D4×C12)⋊11C2, C22⋊C444D6, D6.38(C2×D4), C4.219(S3×D4), (C22×C4)⋊13D6, D6⋊D430C2, C232D633C2, Dic3⋊D447C2, (C4×C12)⋊17C22, D6⋊C465C22, D6⋊Q851C2, (C2×D4).211D6, C12.378(C2×D4), (C2×C6).91C24, C6.47(C22×D4), C422S313C2, C23.9D653C2, D6.D449C2, C223(C4○D12), C4⋊Dic357C22, Dic3.43(C2×D4), C23.14D646C2, (C2×C12).157C23, Dic3⋊C470C22, (C22×C12)⋊15C22, C32(C22.19C24), (C2×Dic6)⋊52C22, (C4×Dic3)⋊51C22, (C6×D4).304C22, Dic3.D450C2, (C2×D12).209C22, C6.D449C22, C22.116(S3×C23), (C22×C6).161C23, C23.180(C22×S3), (C2×Dic3).38C23, (S3×C23).106C22, (C22×S3).170C23, (C22×Dic3).220C22, C2.19(C2×S3×D4), (C2×C4○D12)⋊5C2, (C2×C6)⋊1(C4○D4), (C4×C3⋊D4)⋊42C2, (S3×C2×C4)⋊47C22, (S3×C22×C4)⋊22C2, C6.39(C2×C4○D4), C2.20(S3×C4○D4), (C3×C4⋊C4)⋊57C22, C2.43(C2×C4○D12), (C2×C3⋊D4)⋊37C22, (C3×C22⋊C4)⋊55C22, (C2×C4).156(C22×S3), SmallGroup(192,1106)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C4214D6
C1C3C6C2×C6C22×S3S3×C23S3×C22×C4 — C4214D6
C3C2×C6 — C4214D6
C1C2×C4C4×D4

Generators and relations for C4214D6
 G = < a,b,c,d | a4=b4=c6=d2=1, ab=ba, cac-1=a-1, dad=a-1b2, bc=cb, bd=db, dcd=c-1 >

Subgroups: 872 in 330 conjugacy classes, 109 normal (91 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C22, S3, C6, C6, C2×C4, C2×C4, D4, Q8, C23, C23, Dic3, Dic3, C12, C12, D6, D6, C2×C6, C2×C6, C2×C6, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C24, Dic6, C4×S3, C4×S3, D12, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C3×D4, C22×S3, C22×S3, C22×C6, C42⋊C2, C4×D4, C4×D4, C22≀C2, C4⋊D4, C22⋊Q8, C22.D4, C23×C4, C2×C4○D4, C4×Dic3, Dic3⋊C4, C4⋊Dic3, D6⋊C4, C6.D4, C4×C12, C3×C22⋊C4, C3×C4⋊C4, C2×Dic6, S3×C2×C4, S3×C2×C4, C2×D12, C4○D12, C22×Dic3, C2×C3⋊D4, C22×C12, C6×D4, S3×C23, C22.19C24, C422S3, C4×D12, Dic3.D4, D6⋊D4, C23.9D6, Dic3⋊D4, D6.D4, D6⋊Q8, C4×C3⋊D4, C232D6, C23.14D6, D4×C12, S3×C22×C4, C2×C4○D12, C4214D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C24, C22×S3, C22×D4, C2×C4○D4, C4○D12, S3×D4, S3×C23, C22.19C24, C2×C4○D12, C2×S3×D4, S3×C4○D4, C4214D6

Smallest permutation representation of C4214D6
On 48 points
Generators in S48
(1 19 14 26)(2 27 15 20)(3 21 16 28)(4 29 17 22)(5 23 18 30)(6 25 13 24)(7 39 44 31)(8 32 45 40)(9 41 46 33)(10 34 47 42)(11 37 48 35)(12 36 43 38)
(1 33 4 36)(2 34 5 31)(3 35 6 32)(7 27 47 23)(8 28 48 24)(9 29 43 19)(10 30 44 20)(11 25 45 21)(12 26 46 22)(13 40 16 37)(14 41 17 38)(15 42 18 39)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 6)(2 5)(3 4)(7 44)(8 43)(9 48)(10 47)(11 46)(12 45)(13 14)(15 18)(16 17)(19 28)(20 27)(21 26)(22 25)(23 30)(24 29)(31 34)(32 33)(35 36)(37 38)(39 42)(40 41)

G:=sub<Sym(48)| (1,19,14,26)(2,27,15,20)(3,21,16,28)(4,29,17,22)(5,23,18,30)(6,25,13,24)(7,39,44,31)(8,32,45,40)(9,41,46,33)(10,34,47,42)(11,37,48,35)(12,36,43,38), (1,33,4,36)(2,34,5,31)(3,35,6,32)(7,27,47,23)(8,28,48,24)(9,29,43,19)(10,30,44,20)(11,25,45,21)(12,26,46,22)(13,40,16,37)(14,41,17,38)(15,42,18,39), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,6)(2,5)(3,4)(7,44)(8,43)(9,48)(10,47)(11,46)(12,45)(13,14)(15,18)(16,17)(19,28)(20,27)(21,26)(22,25)(23,30)(24,29)(31,34)(32,33)(35,36)(37,38)(39,42)(40,41)>;

G:=Group( (1,19,14,26)(2,27,15,20)(3,21,16,28)(4,29,17,22)(5,23,18,30)(6,25,13,24)(7,39,44,31)(8,32,45,40)(9,41,46,33)(10,34,47,42)(11,37,48,35)(12,36,43,38), (1,33,4,36)(2,34,5,31)(3,35,6,32)(7,27,47,23)(8,28,48,24)(9,29,43,19)(10,30,44,20)(11,25,45,21)(12,26,46,22)(13,40,16,37)(14,41,17,38)(15,42,18,39), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,6)(2,5)(3,4)(7,44)(8,43)(9,48)(10,47)(11,46)(12,45)(13,14)(15,18)(16,17)(19,28)(20,27)(21,26)(22,25)(23,30)(24,29)(31,34)(32,33)(35,36)(37,38)(39,42)(40,41) );

G=PermutationGroup([[(1,19,14,26),(2,27,15,20),(3,21,16,28),(4,29,17,22),(5,23,18,30),(6,25,13,24),(7,39,44,31),(8,32,45,40),(9,41,46,33),(10,34,47,42),(11,37,48,35),(12,36,43,38)], [(1,33,4,36),(2,34,5,31),(3,35,6,32),(7,27,47,23),(8,28,48,24),(9,29,43,19),(10,30,44,20),(11,25,45,21),(12,26,46,22),(13,40,16,37),(14,41,17,38),(15,42,18,39)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,6),(2,5),(3,4),(7,44),(8,43),(9,48),(10,47),(11,46),(12,45),(13,14),(15,18),(16,17),(19,28),(20,27),(21,26),(22,25),(23,30),(24,29),(31,34),(32,33),(35,36),(37,38),(39,42),(40,41)]])

48 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K 3 4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O4P6A6B6C6D6E6F6G12A12B12C12D12E···12L
order1222222222223444444444444444466666661212121212···12
size111122466661221111224446666121212222444422224···4

48 irreducible representations

dim111111111111111222222222244
type+++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2C2C2C2S3D4D6D6D6D6D6C4○D4C4○D4C4○D12S3×D4S3×C4○D4
kernelC4214D6C422S3C4×D12Dic3.D4D6⋊D4C23.9D6Dic3⋊D4D6.D4D6⋊Q8C4×C3⋊D4C232D6C23.14D6D4×C12S3×C22×C4C2×C4○D12C4×D4C4×S3C42C22⋊C4C4⋊C4C22×C4C2×D4D6C2×C6C22C4C2
# reps111111111211111141212144822

Matrix representation of C4214D6 in GL6(𝔽13)

0120000
1200000
001000
000100
000001
0000120
,
800000
080000
0012000
0001200
000050
000005
,
1200000
0120000
001100
0012000
0000120
000001
,
1200000
010000
00121200
000100
0000120
0000012

G:=sub<GL(6,GF(13))| [0,12,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,1,0],[8,0,0,0,0,0,0,8,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,5,0,0,0,0,0,0,5],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,12,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,12,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12] >;

C4214D6 in GAP, Magma, Sage, TeX

C_4^2\rtimes_{14}D_6
% in TeX

G:=Group("C4^2:14D6");
// GroupNames label

G:=SmallGroup(192,1106);
// by ID

G=gap.SmallGroup(192,1106);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,100,675,570,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^6=d^2=1,a*b=b*a,c*a*c^-1=a^-1,d*a*d=a^-1*b^2,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽